Jeremy Smith News

Knoxville News Sentinel: UT Experts Believe Syria Events Call for More Research

The Syrian government’s use of chemical weapons in attacks on its own people is raising questions in the research community about the need to counteract such activity, according to two experts at the University of Tennessee. The Knoxville News Sentinel recently interviewed Jeremy Smith, a governor’s chair researcher at UT and Oak Ridge National Laboratory and the director of the UT/ORNL Center for Molecular Biophysics, and Howard Hall, also a governor’s chair and director of the Institute for Nuclear Security at UT. Both experts expressed a need for more research on counteracting these chemical weapons.

News Sentinel Highlights Smith Research on Combating ‘Superbugs’

The Knoxville News Sentinel highlighted the research of Jeremy Smith, which involves the use of supercomputer simulations to help discover a new class of drug candidates that hold promise to combat antibiotic resistance. He is conducting the research with a team at Oak Ridge National Laboratory.

Titan Supercomputer Probes Depths of Biofuel’s Biggest Barrier

Ask a biofuel researcher to name the single greatest technical barrier to cost-effective ethanol, and you’re likely to receive a one-word response: lignin. To better understand exactly how lignin persists, researchers ORNL created one of the largest biomolecular simulations to date using the Titan supercomputer to track and analyze millions of atoms. The research was led by Jeremy Smith, UT Governor’s Chair based in the Department of Biochemistry and Cellular and Molecular Biology.

Ozy: A Drug to Fight Chemical Weapons

Jeremy Smith, UT-ORNL Governor’s Chair and an expert in computational biology, is part of the team that is trying to engineer enzymes—called bioscavengers—so they work more efficiently against chemical weapons. His work is featured in an article on Ozy.com. “They (the researchers) want to employ advanced quantum and molecular mechanics to design an enzyme that

Read more

UT Researchers Use Computers for Drug Research

UT researchers are using supercomputing to simulate the interactions of drug compounds and proteins in the body. The computers allow them to rapidly collect and analyze data which could make medicine cheaper, find new uses for existing drugs, and enhance the understanding of a drug’s potential side effects.

Time: Squid Protein: Our Best Defense Against Chemical Weapons?

Time logo

Time wrote about a recent study by UT and ORNL researchers, published in the Journal of Physical Chemistry, that focuses on the engineering of enzymes produced in the bodies of squid that may be effective in breaking down nerve gasses and other deadly chemical weapons. The team aspires to create a prophylactic drug from these enzymes that will mitigate their harmful effects on humans, but first they must modify the enzymes to ensure that the human body won’t destroy them first.